YPE html>

Medical ultrasound systems | Interface Focus
Restricted accessArticles

Medical ultrasound systems

    Medical ultrasound imaging has advanced dramatically since its introduction only a few decades ago. This paper provides a short historical background, and then briefly describes many of the system features and concepts required in a modern commercial ultrasound system. The topics addressed include array beam formation, steering and focusing; array and matrix transducers; echo image formation; tissue harmonic imaging; speckle reduction through frequency and spatial compounding, and image processing; tissue aberration; Doppler flow detection; and system architectures. It then describes some of the more practical aspects of ultrasound system design necessary to be taken into account for today's marketplace. It finally discusses the recent explosion of portable and handheld devices and their potential to expand the clinical footprint of ultrasound into regions of the world where medical care is practically non-existent. Throughout the article reference is made to ways in which ultrasound imaging has benefited from advances in the commercial electronics industry. It is meant to be an overview of the field as an introduction to other more detailed papers in this special issue.


    One contribution of 15 to a Theme Issue ‘Recent advances in biomedical ultrasonic imaging techniques’.


    • 1
      Kremkau F. W.. 2011Sonography prinicples and instruments, pp. 292, 8th edn.Amsterdam, The Netherlands: Elsevier Saunders. Google Scholar
    • 2
      Wells P. N.. 1988Ultrasound imaging. J. Biomed. Eng. 10, 548–554.doi:10.1016/0141-5425(88)90114-8 (doi:10.1016/0141-5425(88)90114-8). Crossref, PubMed, Google Scholar
    • 3
      Flax S. W.& O'Donnell M.. 1988Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 758–767.doi:10.1109/58.9333 (doi:10.1109/58.9333). Crossref, PubMed, ISI, Google Scholar
    • 4
      Nock L., Trahey G. E.& Smith S. W.. 1989Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Acoust. Soc. Am. 85, 1819–1833.doi:10.1121/1.397889 (doi:10.1121/1.397889). Crossref, PubMed, ISI, Google Scholar
    • 5
      O'Donnell M.& Flax S. W.. 1988Phase-aberration correction using signals from point reflectors and diffuse scatterers: measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 768–774.doi:10.1109/58.9334 (doi:10.1109/58.9334). Crossref, PubMed, ISI, Google Scholar
    • 6
      Magnin P. A., von Ramm O. T.& Thurstone F. L.. 1982Frequency compounding for speckle contrast reduction in phased array images. Ultrason. Imaging 4, 267–281.doi:10.1016/0161-7346(82)90011-6 (doi:10.1016/0161-7346(82)90011-6). Crossref, PubMed, ISI, Google Scholar
    • 7
      Trahey G. E., Allison J. W., Smith S. W.& von Ramm O. T.. 1986A quantitative approach to speckle reduction via frequency compounding. Ultrason. Imaging 8, 151–164.doi:10.1016/0161-7346(86)90006-4 (doi:10.1016/0161-7346(86)90006-4). Crossref, PubMed, ISI, Google Scholar
    • 8
      O'Donnell M.& Silverstein S. D.. 1988Optimum displacement for compound image generation in medical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 35, 470–476.doi:10.1109/58.4184 (doi:10.1109/58.4184). Google Scholar
    • 9
      Entrekin R. R., Porter B. A., Sillesen H. H., Wong A. D., Cooperberg P. L.& Fix C. H.. 2001Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound. Semin. Ultrasound CT MR 22, 50–64.doi:10.1016/S0887-2171(01)90018-6 (doi:10.1016/S0887-2171(01)90018-6). Crossref, PubMed, ISI, Google Scholar
    • 10
      Ying M., Pang S. F.& Sin M. H.. 2006Reliability of 3-D ultrasound measurements of cervical lymph node volume. Ultrasound Med. Biol. 32, 995–1001.doi:10.1016/j.ultrasmedbio.2006.03.009 (doi:10.1016/j.ultrasmedbio.2006.03.009). Crossref, PubMed, ISI, Google Scholar
    • 11
      Meuwly J. Y., Thiran J. P.& Gudinchet F.. 2003Application of adaptive image processing technique to real-time spatial compound ultrasound imaging improves image quality. Invest. Radiol. 38, 257–262. Crossref, PubMed, ISI, Google Scholar
    • 12
      Singh A. K.& Behari J.. 1994Ultrasound nonlinearity parameter (B/A) in biological tissues. Indian J. Exp. Biol. 32, 281–283. PubMed, Google Scholar
    • 13
      Starritt H. C., Duck F. A., Hawkins A. J.& Humphrey V. F.. 1986The development of harmonic distortion in pulsed finite-amplitude ultrasound passing through liver. Phys. Med. Biol. 31, 1401–1409.doi:10.1088/0031-9155/31/12/007 (doi:10.1088/0031-9155/31/12/007). Crossref, PubMed, ISI, Google Scholar
    • 14
      Desser T. S.& Jeffrey R. B.. 2001Tissue harmonic imaging techniques: physical principles and clinical applications. Semin. Ultrasound CT MR 22, 1–10.doi:10.1016/S0887-2171(01)90014-9 (doi:10.1016/S0887-2171(01)90014-9). Crossref, PubMed, ISI, Google Scholar
    • 15
      Willinek W. A., von Falkenhausen M., Strunk H.& Schild H. H.. 2000Tissue harmonic imaging in comparison with conventional sonography: effect on image quality and observer variability in the measurement of the intima-media thickness in the common carotid artery. Rofo 172, 641–645. Crossref, PubMed, Google Scholar
    • 16
      Kubota K., Hisa N., Nishikawa T., Ohnishi T., Ogawa Y.& Yoshida S.. 2000The utility of tissue harmonic imaging in the liver: a comparison with conventional gray-scale sonography. Oncol. Rep. 7, 767–771. PubMed, ISI, Google Scholar
    • 17
      Tanabe K., Belohlavek M., Greenleaf J. F.& Seward J. B.. 2000Tissue harmonic imaging: experimental analysis of the mechanism of image improvement. Jpn Circ. J. 64, 202–206.doi:10.1253/jcj.64.202 (doi:10.1253/jcj.64.202). Crossref, PubMed, Google Scholar
    • 18
      Whittingham T. A.. 1999Tissue harmonic imaging. Eur. Radiol. 9((Suppl. 3)), S323–S326.doi:10.1007/PL00014065 (doi:10.1007/PL00014065). Crossref, PubMed, ISI, Google Scholar
    • 19
      Tranquart F., Grenier N., Eder V.& Pourcelot L.. 1999Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med. Biol. 25, 889–894.doi:10.1016/S0301-5629(99)00060-5 (doi:10.1016/S0301-5629(99)00060-5). Crossref, PubMed, ISI, Google Scholar
    • 20
      Hara Y., Nakamura M.& Tamaki N.. 1999A new sonographic technique for assessing carotid artery disease: extended-field-of-view imaging. AJNR Am. J. Neuroradiol. 20, 267–270. PubMed, ISI, Google Scholar
    • 21
      Weng L., Tirumalai A. P., Lowery C. M., Nock L. F., Gustafson D. E., Von Behren P. L.& Kim J. H.. 1997US extended-field-of-view imaging technology. Radiology 203, 877–880. Crossref, PubMed, ISI, Google Scholar
    • 22
      Jensen J. A.. 2007Medical ultrasound imaging. Prog. Biophys. Mol. Biol. 93, 153–165.doi:10.1016/j.pbiomolbio.2006.07.025 (doi:10.1016/j.pbiomolbio.2006.07.025). Crossref, PubMed, ISI, Google Scholar
    • 23
      Jensen J. A., et al.2005Ultrasound research scanner for real-time synthetic aperture data acquisition. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 881–891.doi:10.1109/TUFFC.2005.1503974 (doi:10.1109/TUFFC.2005.1503974). Crossref, PubMed, ISI, Google Scholar
    • 24
      Jensen J. A., Nikolov S. I., Gammelmark K. L.& Pedersen M. H.. 2006Synthetic aperture ultrasound imaging. Ultrasonics 44((Suppl. 1)), E5–E15.doi:10.1016/j.ultras.2006.07.017 (doi:10.1016/j.ultras.2006.07.017). Crossref, PubMed, ISI, Google Scholar
    • 25
      Misaridis T.& Jensen J. A.. 2005Use of modulated excitation signals in medical ultrasound. I. Basic concepts and expected benefits. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 177–191.doi:10.1109/TUFFC.2005.1406545 (doi:10.1109/TUFFC.2005.1406545). Crossref, PubMed, ISI, Google Scholar
    • 26
      Misaridis T.& Jensen J. A.. 2005Use of modulated excitation signals in medical ultrasound. II. Design and performance for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 192–207.doi:10.1109/TUFFC.2005.1406546 (doi:10.1109/TUFFC.2005.1406546). Crossref, PubMed, ISI, Google Scholar
    • 27
      Misaridis T.& Jensen J. A.. 2005Use of modulated excitation signals in medical ultrasound. III. High frame rate imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 208–219.doi:10.1109/TUFFC.2005.1406547 (doi:10.1109/TUFFC.2005.1406547). Crossref, PubMed, ISI, Google Scholar
    • 28
      AbouZahr C.& Wardlaw T.. 2003Maternal mortality in 2000: estimates developed by WHO, UNICEF and UNFPA. Geneva, Switzerland: World Health Organization. Google Scholar
    ultrasound systems