Products

Ultrasonic Thickness Gauge

The usage of an ultrasonic thickness gauge for non-destructive testing to check material properties such as thickness measurement, is now regularly utilized in all areas of industrial measurements. The ability to gauge thickness measurement without requiring access to both sides of the test piece, offers this technology a multitude of possible applications. Paint thickness gauge, ultrasonic coating thickness gauge, digital thickness gauges and many more options are available to test plastics, glass, ceramics, metal and other materials.

Ultrasonic Bond Tester

A bond tester is the perfect solution for evaluating the integrity of joints in products like honeycomb composites, carbon fiber, and metal joints

Ultrasonic Flaw Detector

Modern ultrasonic flaw detectors are small, portable, microprocessor-based instruments suitable for both shop and field use. They generate and display an ultrasonic waveform that is interpreted by a trained operator, often with the aid of analysis software, to locate and categorize flaws in test pieces. They will typically include an ultrasonic pulser/receiver, hardware and software for signal capture and analysis, a waveform display, and a data logging module. While some analog-based flaw detectors are still manufactured, most contemporary instruments use digital signal processing for improved stability and precision

Phased Array

Phased array is an advanced method of ultrasonic testing that has applications in medical imaging and industrial nondestructive testing. Common applications are to noninvasively examine the heart or to find flaws in manufactured materials such as welds. Single-element (non-phased array) probes, known technically as monolithic probes, emit a beam in a fixed direction.

Time-of-flight diffraction (TOFD)

Time-of-flight diffraction (TOFD) method of ultrasonic testing is a sensitive and accurate method for the nondestructive testing of welds for defects. TOFD originated from tip diffraction techniques which were first published by Silk and Liddington in 1975 which paved the way for TOFD. Later works on this technique are given in a number of sources which include Harumi et al. (1989), Avioli et al. (1991), and Bray and Stanley (1997).

Bray and Stanley (1997) summarized TOFD as tip-diffraction techniques which utilized the principle that the tips of a crack when struck by a wave will diffract the signals back to the other location on the surface. The depth of these tips can be determined from the diffracted energy.

TOFD was invented in the UK in the 1970s initially as a research tool.The use of TOFD enabled crack sizes to be measured more accurately, so that expensive components could be kept in operation as long as possible with minimal risk of failure.