What is a quartz crystal resonator?
Crystal oscillator
If you are looking for more details, kindly visit Huixun.
"Padding capacitor" redirects here. For adjustable capacitors, see Trimmer capacitor
A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element.[1][2][3] The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is a quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators.[1] However, other piezoelectric materials including polycrystalline ceramics are used in similar circuits.
A crystal oscillator relies on the slight change in shape of a quartz crystal under an electric field, a property known as inverse piezoelectricity. A voltage applied to the electrodes on the crystal causes it to change shape; when the voltage is removed, the crystal generates a small voltage as it elastically returns to its original shape. The quartz oscillates at a stable resonant frequency (relative to other low-priced oscillators) with frequency accuracy measured in parts per million (ppm). It behaves like an RLC circuit, but with a much higher Q factor (lower energy loss on each cycle of oscillation and higher frequency selectivity) than can be reliably achieved with discrete capacitors (C) and inductors (L), which suffer from parasitic resistance (R). Once a quartz crystal is adjusted to a particular frequency (which is affected by the mass of electrodes attached to the crystal, the orientation of the crystal, temperature and other factors), it maintains that frequency with high stability.[4]
Quartz crystals are manufactured for frequencies from a few tens of kilohertz to hundreds of megahertz. As of , around two billion crystals were manufactured annually.[5] Most are used for consumer devices such as wristwatches, clocks, radios, computers, and cellphones. However, in applications where small size and weight is needed crystals can be replaced by thin-film bulk acoustic resonators, specifically if ultra-high frequency (more than roughly 1.5 GHz) resonance is needed. Quartz crystals are also found inside test and measurement equipment, such as counters, signal generators, and oscilloscopes.
Terminology
[
edit
]
Quartz crystal resonator (left) and quartz crystal oscillator (right)A crystal oscillator is an electric oscillator type circuit that uses a piezoelectric resonator, a crystal, as its frequency-determining element. Crystal is the common term used in electronics for the frequency-determining component, a wafer of quartz crystal or ceramic with electrodes connected to it. A more accurate term for "crystal" is piezoelectric resonator. Crystals are also used in other types of electronic circuits, such as crystal filters.
Piezoelectric resonators are sold as separate components for use in crystal oscillator circuits. They are also often incorporated in a single package with the crystal oscillator circuit.
History
[
edit
]
100 kHz crystal oscillators at the US National Bureau of Standards that served as the frequency standard for the United States in Very early Bell Labs crystals from Vectron International CollectionPiezoelectricity was discovered by Jacques and Pierre Curie in . Paul Langevin first investigated quartz resonators for use in sonar during World War I. The first crystal-controlled oscillator, using a crystal of Rochelle salt, was built in and patented[6] in by Alexander M. Nicholson at Bell Laboratories, although his priority was disputed by Walter Guyton Cady.[7] Cady built the first quartz crystal oscillator in .[8] Other early innovators in quartz crystal oscillators include G. W. Pierce and Louis Essen.
Quartz crystal oscillators were developed for high-stability frequency references during the s and s. Prior to crystals, radio stations controlled their frequency with tuned circuits, which could easily drift off frequency by 34 kHz.[9] Since broadcast stations were assigned frequencies only 10 kHz (Americas) or 9 kHz (elsewhere) apart, interference between adjacent stations due to frequency drift was a common problem.[9] In , Westinghouse installed a crystal oscillator in its flagship station KDKA,[9] and by , quartz crystals were used to control the frequency of many broadcasting stations and were popular with amateur radio operators.[10] In , Warren Marrison of Bell Laboratories developed the first quartz-crystal clock. With accuracies of up to 1 second in 30 years (30 ms/y, or 0.95 ns/s),[8] quartz clocks replaced precision pendulum clocks as the world's most accurate timekeepers until atomic clocks were developed in the s. Using the early work at Bell Laboratories, American and Telegraph Company (AT&T) eventually established their Frequency Control Products division, later spun off and known today as Vectron International.[11]
A number of firms started producing quartz crystals for electronic use during this time. Using what are now considered primitive methods, about 100,000 crystal units were produced in the United States during . Through World War II crystals were made from natural quartz crystal, virtually all from Brazil. Shortages of crystals during the war caused by the demand for accurate frequency control of military and naval radios and radars spurred postwar research into culturing synthetic quartz, and by a hydrothermal process for growing quartz crystals on a commercial scale was developed at Bell Laboratories. By the s virtually all crystals used in electronics were synthetic.
In , Juergen Staudte invented a photolithographic process for manufacturing quartz crystal oscillators while working at North American Aviation (now Rockwell) that allowed them to be made small enough for portable products like watches.[12]
Although crystal oscillators still most commonly use quartz crystals, devices using other materials are becoming more common, such as ceramic resonators.
Crystal oscillation modesPrinciple
[
edit
]
A crystal is a solid in which the constituent atoms, molecules, or ions are packed in a regularly ordered, repeating pattern extending in all three spatial dimensions.
Almost any object made of an elastic material could be used like a crystal, with appropriate transducers, since all objects have natural resonant frequencies of vibration. For example, steel is very elastic and has a high speed of sound. It was often used in mechanical filters before quartz. The resonant frequency depends on size, shape, elasticity, and the speed of sound in the material. High-frequency crystals are typically cut in the shape of a simple rectangle or circular disk. Low-frequency crystals, such as those used in digital watches, are typically cut in the shape of a tuning fork. For applications not needing very precise timing, a low-cost ceramic resonator is often used in place of a quartz crystal.
When a crystal of quartz is properly cut and mounted, it can be made to distort in an electric field by applying a voltage to an electrode near or on the crystal. This property is known as inverse piezoelectricity. When the field is removed, the quartz generates an electric field as it returns to its previous shape, and this can generate a voltage. The result is that a quartz crystal behaves like an RLC circuit, composed of an inductor, capacitor and resistor, with a precise resonant frequency.
Quartz has the further advantage that its elastic constants and its size change in such a way that the frequency dependence on temperature can be very low. The specific characteristics depend on the mode of vibration and the angle at which the quartz is cut (relative to its crystallographic axes).[13] Therefore, the resonant frequency of the plate, which depends on its size, does not change much. This means that a quartz clock, filter or oscillator remains accurate. For critical applications the quartz oscillator is mounted in a temperature-controlled container, called a crystal oven, and can also be mounted on shock absorbers to prevent perturbation by external mechanical vibrations.
Modeling
[
edit
]
Electrical model
[
edit
]
A quartz crystal can be modeled as an electrical network with low-impedance (series) and high-impedance (parallel) resonance points spaced closely together. Mathematically, using the Laplace transform, the impedance of this network can be written as:
Schematic symbol and equivalent circuit for a quartz crystal in an oscillatorZ ( s ) = ( 1 s C 1 + s L 1 + R 1 ) ( 1 s C 0 ) , {\displaystyle Z(s)=\left({{\frac {1}{s\cdot C_{1}}}+s\cdot L_{1}+R_{1}}\right)\left\|\left({\frac {1}{s\cdot C_{0}}}\right)\right.,}
or
Z ( s ) = s 2 + s R 1 L 1 + ω s 2 ( s C 0 ) [ s 2 + s R 1 L 1 + ω p 2 ] ω s = 1 L 1 C 1 , ω p = C 1 + C 0 L 1 C 1 C 0 = ω s 1 + C 1 C 0 ω s ( 1 + C 1 2 C 0 ) ( C 0 C 1 ) {\displaystyle {\begin{aligned}Z(s)&={\frac {s^{2}+s{\frac {R_{1}}{L_{1}}}+{\omega _{\mathrm {s} }}^{2}}{\left(s\cdot C_{0}\right)\left[s^{2}+s{\frac {R_{1}}{L_{1}}}+{\omega _{\mathrm {p} }}^{2}\right]}}\\[2pt]\Rightarrow \omega _{\mathrm {s} }&={\frac {1}{\sqrt {L_{1}\cdot C_{1}}}},\quad \omega _{\mathrm {p} }={\sqrt {\frac {C_{1}+C_{0}}{L_{1}\cdot C_{1}\cdot C_{0}}}}=\omega _{\mathrm {s} }{\sqrt {1+{\frac {C_{1}}{C_{0}}}}}\approx \omega _{\mathrm {s} }\left(1+{\frac {C_{1}}{2C_{0}}}\right)\quad \left(C_{0}\gg C_{1}\right)\end{aligned}}}
where s {\displaystyle s} is the complex frequency ( s = j ω {\displaystyle s=j\omega } ), ω s {\displaystyle \omega _{\mathrm {s} }} is the series resonant angular frequency, and ω p {\displaystyle \omega _{\mathrm {p} }} is the parallel resonant angular frequency.
Adding capacitance across a crystal causes the (parallel) resonant frequency to decrease. Adding inductance across a crystal causes the (parallel) resonant frequency to increase. These effects can be used to adjust the frequency at which a crystal oscillates. Crystal manufacturers normally cut and trim their crystals to have a specified resonant frequency with a known "load" capacitance added to the crystal. For example, a crystal intended for a 6 pF load has its specified parallel resonant frequency when a 6.0 pF capacitor is placed across it. Without the load capacitance, the resonant frequency is higher.
Resonance modes
[
edit
]
A quartz crystal provides both series and parallel resonance. The series resonance is a few kilohertz lower than the parallel one. Crystals below 30 MHz are generally operated between series and parallel resonance, which means that the crystal appears as an inductive reactance in operation, this inductance forming a parallel resonant circuit with externally connected parallel capacitance.
Frequency response of a 100kHz crystal, showing series and parallel resonanceAny small additional capacitance in parallel with the crystal pulls the frequency lower. Moreover, the effective inductive reactance of the crystal can be reduced by adding a capacitor in series with the crystal. This latter technique can provide a useful method of trimming the oscillatory frequency within a narrow range; in this case inserting a capacitor in series with the crystal raises the frequency of oscillation. For a crystal to operate at its specified frequency, the electronic circuit has to be exactly that specified by the crystal manufacturer. Note that these points imply a subtlety concerning crystal oscillators in this frequency range: the crystal does not usually oscillate at precisely either of its resonant frequencies.
Crystals above 30 MHz (up to >200 MHz) are generally operated at series resonance where the impedance appears at its minimum and equal to the series resistance. For these crystals the series resistance is specified (<100 Ω) instead of the parallel capacitance. To reach higher frequencies, a crystal can be made to vibrate at one of its overtone modes, which occur near multiples of the fundamental resonant frequency. Only odd numbered overtones are used. Such a crystal is referred to as a 3rd, 5th, or even 7th overtone crystal. To accomplish this, the oscillator circuit usually includes additional LC circuits to select the desired overtone.
Temperature effects
[
edit
]
A crystal's frequency characteristic depends on the shape or "cut" of the crystal. A tuning-fork crystal is usually cut such that its frequency dependence on temperature is quadratic with the maximum around 25 °C.[citation needed] This means that a tuning-fork crystal oscillator resonates close to its target frequency at room temperature, but slows when the temperature either increases or decreases from room temperature. A common parabolic coefficient for a 32 kHz tuning-fork crystal is 0.04 ppm/°C2:[citation needed]
f = f 0 [ 1 0.04 ppm / C 2 ( T T 0 ) 2 ] . {\displaystyle f=f_{0}\left[1-0.04~{\text{ppm}}/^{\circ }{\text{C}}^{2}\cdot (T-T_{0})^{2}\right].}
In a real application, this means that a clock built using a regular 32 kHz tuning-fork crystal keeps good time at room temperature, but loses 2 minutes per year at 10 °C above or below room temperature and loses 8 minutes per year at 20 °C above or below room temperature due to the quartz crystal.
Crystal oscillator circuits
[
edit
]
The crystal oscillator circuit sustains oscillation by taking a voltage signal from the quartz resonator, amplifying it, and feeding it back to the resonator. The rate of expansion and contraction of the quartz is the resonant frequency, and is determined by the cut and size of the crystal. When the energy of the generated output frequencies matches the losses in the circuit, an oscillation can be sustained.
An oscillator crystal has two electrically conductive plates, with a slice or tuning fork of quartz crystal sandwiched between them. During startup, the controlling circuit places the crystal into an unstable equilibrium, and due to the positive feedback in the system, any tiny fraction of noise is amplified, ramping up the oscillation. The crystal resonator can also be seen as a highly frequency-selective filter in this system: it only passes a very narrow subband of frequencies around the resonant one, attenuating everything else. Eventually, only the resonant frequency is active. As the oscillator amplifies the signals coming out of the crystal, the signals in the crystal's frequency band becomes stronger, eventually dominating the output of the oscillator. The narrow resonance band of the quartz crystal filters out the unwanted frequencies.
The output frequency of a quartz oscillator can be either that of the fundamental resonance or of a multiple of that resonance, called a harmonic frequency. Harmonics are an exact integer multiple of the fundamental frequency. But, like many other mechanical resonators, crystals exhibit several modes of oscillation, usually at approximately odd integer multiples of the fundamental frequency. These are termed "overtone modes", and oscillator circuits can be designed to excite them. The overtone modes are at frequencies which are approximate, but not exact odd integer multiples of that of the fundamental mode, and overtone frequencies are therefore not exact harmonics of the fundamental.
High frequency crystals are often designed to operate at third, fifth, or seventh overtones. Manufacturers have difficulty producing crystals thin enough to produce fundamental frequencies over 30 MHz. To produce higher frequencies, manufacturers make overtone crystals tuned to put the 3rd, 5th, or 7th overtone at the desired frequency, because they are thicker and therefore easier to manufacture than a fundamental crystal that would produce the same frequencyalthough exciting the desired overtone frequency requires a slightly more complicated oscillator circuit.[14][15][16][17][18] A fundamental crystal oscillator circuit is simpler and more efficient and has more pullability than a third overtone circuit. Depending on the manufacturer, the highest available fundamental frequency may be 25 MHz to 66 MHz.[19][20]
Internals of a quartz crystal.A major reason for the wide use of crystal oscillators is their high Q factor. A typical Q value for a quartz oscillator ranges from 104 to 106, compared to perhaps 102 for an LC oscillator. The maximum Q for a high stability quartz oscillator can be estimated as Q = 1.6 × 107/f, where f is the resonant frequency in megahertz.[21][22]
One of the most important traits of quartz crystal oscillators is that they can exhibit very low phase noise. In many oscillators, any spectral energy at the resonant frequency is amplified by the oscillator, resulting in a collection of tones at different phases. In a crystal oscillator, the crystal mostly vibrates in one axis, therefore only one phase is dominant. This property of low phase noise makes them particularly useful in telecommunications where stable signals are needed, and in scientific equipment where very precise time references are needed.
Environmental changes of temperature, humidity, pressure, and vibration can change the resonant frequency of a quartz crystal, but there are several designs that reduce these environmental effects. These include the TCXO, MCXO, and OCXO which are defined below. These designs, particularly the OCXO, often produce devices with excellent short-term stability. The limitations in short-term stability are due mainly to noise from electronic components in the oscillator circuits. Long-term stability is limited by aging of the crystal.
Due to aging and environmental factors (such as temperature and vibration), it is difficult to keep even the best quartz oscillators within one part in of their nominal frequency without constant adjustment. For this reason, atomic oscillators are used for applications requiring better long-term stability and accuracy.
Spurious frequencies
[
edit
]
25 MHz crystal exhibiting spurious responseFor crystals operated at series resonance or pulled away from the main mode by the inclusion of a series inductor or capacitor, significant (and temperature-dependent) spurious responses may be experienced. Though most spurious modes are typically some tens of kilohertz above the wanted series resonance, their temperature coefficient is different from the main mode, and the spurious response may move through the main mode at certain temperatures. Even if the series resistances at the spurious resonances appear higher than the one at the wanted frequency, a rapid change in the main mode series resistance can occur at specific temperatures when the two frequencies are coincidental. A consequence of these activity dips is that the oscillator may lock at a spurious frequency at specific temperatures. This is generally minimized by ensuring that the maintaining circuit has insufficient gain to activate unwanted modes.
Spurious frequencies are also generated by subjecting the crystal to vibration. This modulates the resonant frequency to a small degree by the frequency of the vibrations. SC-cut (Stress Compensated) crystals are designed to minimize the frequency effect of mounting stress and they are therefore less sensitive to vibration. Acceleration effects including gravity are also reduced with SC-cut crystals, as is frequency change with time due to long term mounting stress variation. There are disadvantages with SC-cut shear mode crystals, such as the need for the maintaining oscillator to discriminate against other closely related unwanted modes and increased frequency change due to temperature when subject to a full ambient range. SC-cut crystals are most advantageous where temperature control at their temperature of zero temperature coefficient (turnover) is possible, under these circumstances an overall stability performance from premium units can approach the stability of rubidium frequency standards.
Commonly used crystal frequencies
[
edit
]
Crystals can be manufactured for oscillation over a wide range of frequencies, from a few kilohertz up to several hundred megahertz. Many applications call for a crystal oscillator frequency conveniently related to some other desired frequency, so hundreds of standard crystal frequencies are made in large quantities and stocked by electronics distributors. For example 3. MHz crystals, which were made in large quantities for NTSC color television receivers, are now popular for many non-television applications (although most modern television receivers now use other frequency crystals for the color decoder). Using frequency dividers, frequency multipliers and phase-locked loop circuits, it is practical to derive a wide range of frequencies from one reference frequency.
Crystal structures and materials
[
edit
]
Quartz
[
edit
]
Common package types for quartz crystal products Cluster of natural quartz crystals A synthetic quartz crystal grown using hydrothermal synthesis, about19 cm
long and weighing about127 g
Tuning-fork crystal used in a modern quartz watch Simple quartz crystal Inside construction of an HC-49 package quartz crystal Flexural and thickness-shear crystals Internal construction of an HC-13 package 100kHz quartz crystalThe most common material for oscillator crystals is quartz. At the beginning of the technology, natural quartz crystals were used but now synthetic crystalline quartz grown by hydrothermal synthesis is predominant due to higher purity, lower cost and more convenient handling. One of the few remaining uses of natural crystals is for pressure transducers in deep wells. During World War II and for some time afterwards, natural quartz was considered a strategic material by the USA. Large crystals were imported from Brazil. Raw "lascas", the source material quartz for hydrothermal synthesis, are imported to USA or mined locally by Coleman Quartz. The average value of as-grown synthetic quartz in was 60 USD/kg.[23]
Types
[
edit
]
Two types of quartz crystals exist: left-handed and right-handed. The two differ in their optical rotation but they are identical in other physical properties. Both left and right-handed crystals can be used for oscillators, if the cut angle is correct. In manufacture, right-handed quartz is generally used.[24] The SiO4 tetrahedrons form parallel helices; the direction of twist of the helix determines the left- or right-hand orientation. The helixes are aligned along the c-axis and merged, sharing atoms. The mass of the helixes forms a mesh of small and large channels parallel to the c-axis. The large ones are large enough to allow some mobility of smaller ions and molecules through the crystal.[25]
Quartz exists in several phases. At 573 °C at 1 atmosphere (and at higher temperatures and higher pressures) the α-quartz undergoes quartz inversion, transforms reversibly to β-quartz. The reverse process however is not entirely homogeneous and crystal twinning occurs. Care must be taken during manufacturing and processing to avoid phase transformation. Other phases, e.g. the higher-temperature phases tridymite and cristobalite, are not significant for oscillators. All quartz oscillator crystals are the α-quartz type.
Quality
[
edit
]
Infrared spectrophotometry is used as one of the methods for measuring the quality of the grown crystals. The wavenumbers , , and cm1 are commonly used. The measured value is based on the absorption bands of the OH radical and the infrared Q value is calculated. The electronic grade crystals, grade C, have Q of 1.8 million or above; the premium grade B crystals have Q of 2.2 million, and special premium grade A crystals have Q of 3.0 million. The Q value is calculated only for the z region; crystals containing other regions can be adversely affected. Another quality indicator is the etch channel density; when the crystal is etched, tubular channels are created along linear defects. For processing involving etching, e.g. the wristwatch tuning fork crystals, low etch channel density is desirable. The etch channel density for swept quartz is about 10100 and significantly more for unswept quartz. Presence of etch channels and etch pits degrades the resonator's Q and introduces nonlinearities.[26]
Production
[
edit
]
Quartz crystals can be grown for specific purposes.
Crystals for AT-cut are the most common in mass production of oscillator materials; the shape and dimensions are optimized for high yield of the required wafers. High-purity quartz crystals are grown with especially low content of aluminium, alkali metal and other impurities and minimal defects; the low amount of alkali metals provides increased resistance to ionizing radiation. Crystals for wrist watches, for cutting the tuning fork Hz crystals, are grown with very low etch channel density.
Crystals for SAW devices are grown as flat, with large X-size seed with low etch channel density.
Special high-Q crystals, for use in highly stable oscillators, are grown at constant slow speed and have constant low infrared absorption along the entire Z axis. Crystals can be grown as Y-bar, with a seed crystal in bar shape and elongated along the Y axis, or as Z-plate, grown from a plate seed with Y-axis direction length and X-axis width.[24] The region around the seed crystal contains a large number of crystal defects and should not be used for the wafers.
Crystals grow anisotropically; the growth along the Z axis is up to 3 times faster than along the X axis. The growth direction and rate also influences the rate of uptake of impurities.[27] Y-bar crystals, or Z-plate crystals with long Y axis, have four growth regions usually called +X, X, Z, and S.[28] The distribution of impurities during growth is uneven; different growth areas contain different levels of contaminants. The Z regions are the purest, the small occasionally present S regions are less pure, the +X region is yet less pure, and the -X region has the highest level of impurities. The impurities have a negative impact on radiation hardness, susceptibility to twinning, filter loss, and long and short term stability of the crystals.[29] Different-cut seeds in different orientations may provide other kinds of growth regions.[30] The growth speed of the X direction is slowest due to the effect of adsorption of water molecules on the crystal surface; aluminium impurities suppress growth in two other directions. The content of aluminium is lowest in Z region, higher in +X, yet higher in X, and highest in S; the size of S regions also grows with increased amount of aluminium present. The content of hydrogen is lowest in Z region, higher in +X region, yet higher in S region, and highest in X.[31] Aluminium inclusions transform into color centers with gamma-ray irradiation, causing a darkening of the crystal proportional to the dose and level of impurities; the presence of regions with different darkness reveals the different growth regions.
The dominant type of defect of concern in quartz crystals is the substitution of an Al(III) for a Si(IV) atom in the crystal lattice. The aluminium ion has an associated interstitial charge compensator present nearby, which can be a H+ ion (attached to the nearby oxygen and forming a hydroxyl group, called AlOH defect), Li+ ion, Na+ ion, K+ ion (less common), or an electron hole trapped in a nearby oxygen atom orbital. The composition of the growth solution, whether it is based on lithium or sodium alkali compounds, determines the charge compensating ions for the aluminium defects. The ion impurities are of concern as they are not firmly bound and can migrate through the crystal, altering the local lattice elasticity and the resonant frequency of the crystal. Other common impurities of concern are e.g. iron(III) (interstitial), fluorine, boron(III), phosphorus(V) (substitution), titanium(IV) (substitution, universally present in magmatic quartz, less common in hydrothermal quartz), and germanium(IV) (substitution). Sodium and iron ions can cause inclusions of acnite and elemeusite crystals. Inclusions of water may be present in fast-grown crystals; interstitial water molecules are abundant near the crystal seed. Another defect of importance is the hydrogen containing growth defect, when instead of a SiOSi structure, a pair of SiOH HOSi groups is formed; essentially a hydrolyzed bond. Fast-grown crystals contain more hydrogen defects than slow-grown ones. These growth defects source as supply of hydrogen ions for radiation-induced processes and forming Al-OH defects. Germanium impurities tend to trap electrons created during irradiation; the alkali metal cations then migrate towards the negatively charged center and form a stabilizing complex. Matrix defects can also be present; oxygen vacancies, silicon vacancies (usually compensated by 4 hydrogens or 3 hydrogens and a hole), peroxy groups, etc. Some of the defects produce localized levels in the forbidden band, serving as charge traps; Al(III) and B(III) typically serve as hole traps while electron vacancies, titanium, germanium, and phosphorus atoms serve as electron traps. The trapped charge carriers can be released by heating; their recombination is the cause of thermoluminescence.
The mobility of interstitial ions depends strongly on temperature. Hydrogen ions are mobile down to 10 K, but alkali metal ions become mobile only at temperatures around and above 200 K. The hydroxyl defects can be measured by near-infrared spectroscopy. The trapped holes can be measured by electron spin resonance. The AlNa+ defects show as an acoustic loss peak due to their stress-induced motion; the AlLi+ defects do not form a potential well so are not detectable this way.[32] Some of the radiation-induced defects during their thermal annealing produce thermoluminescence; defects related to aluminium, titanium, and germanium can be distinguished.[33]
Swept crystals are crystals that have undergone a solid-state electrodiffusion purification process. Sweeping involves heating the crystal above 500 °C in a hydrogen-free atmosphere, with a voltage gradient of at least 1 kV/cm, for several hours (usually over 12). The migration of impurities and the gradual replacement of alkali metal ions with hydrogen (when swept in air) or electron holes (when swept in vacuum) causes a weak electric current through the crystal; decay of this current to a constant value signals the end of the process. The crystal is then left to cool, while the electric field is maintained. The impurities are concentrated at the cathode region of the crystal, which is cut off afterwards and discarded.[34] Swept crystals have increased resistance to radiation, as the dose effects are dependent on the level of alkali metal impurities; they are suitable for use in devices exposed to ionizing radiation, e.g. for nuclear and space technology.[35] Sweeping under vacuum at higher temperatures and higher field strengths yields yet more radiation-hard crystals.[36] The level and character of impurities can be measured by infrared spectroscopy.[37] Quartz can be swept in both α and β phase; sweeping in β phase is faster, but the phase transition may induce twinning. Twinning can be mitigated by subjecting the crystal to compression stress in the X direction, or an AC or DC electric field along the X axis while the crystal cools through the phase transformation temperature region.[36]
Sweeping can also be used to introduce one kind of an impurity into the crystal. Lithium, sodium, and hydrogen swept crystals are used for, e.g., studying quartz behavior.
Very small crystals for high fundamental-mode frequencies can be manufactured by photolithography.[26]
Crystals can be adjusted to exact frequencies by laser trimming. A technique used in the world of amateur radio for slight decrease of the crystal frequency may be achieved by exposing crystals with silver electrodes to vapors of iodine, which causes a slight mass increase on the surface by forming a thin layer of silver iodide; such crystals however had problematic long-term stability. Another method commonly used is electrochemical increase or decrease of silver electrode thickness by submerging a resonator in lapis lazuli dissolved in water, citric acid in water, or water with salt, and using the resonator as one electrode, and a small silver electrode as the other.
By choosing the direction of current one can either increase or decrease the mass of the electrodes. Details were published in "Radio" magazine (3/) by UB5LEV.
Raising frequency by scratching off parts of the electrodes is not advised as this may damage the crystal and lower its Q factor. Capacitor trimmers can be also used for frequency adjustment of the oscillator circuit.
Other materials
[
edit
]
Some other piezoelectric materials than quartz can be employed. These include single crystals of lithium tantalate, lithium niobate, lithium borate, berlinite, gallium arsenide, lithium tetraborate, aluminium phosphate, bismuth germanium oxide, polycrystalline zirconium titanate ceramics, high-alumina ceramics, silicon-zinc oxide composite, or dipotassium tartrate.[38][39] Some materials may be more suitable for specific applications. An oscillator crystal can be also manufactured by depositing the resonator material on the silicon chip surface.[40] Crystals of gallium phosphate, langasite, langanite and langatate are about 10 times more pullable than the corresponding quartz crystals, and are used in some VCXO oscillators.[41]
Stability
[
edit
]
The frequency stability is determined by the crystal's Q. It is inversely dependent on the frequency, and on the constant that is dependent on the particular cut. Other factors influencing Q are the overtone used, the temperature, the level of driving of the crystal, the quality of the surface finish, the mechanical stresses imposed on the crystal by bonding and mounting, the geometry of the crystal and the attached electrodes, the material purity and defects in the crystal, type and pressure of the gas in the enclosure, interfering modes, and presence and absorbed dose of ionizing and neutron radiation.
The stability of AT cut crystals decreases with increasing frequency. For more accurate higher frequencies it is better to use a crystal with lower fundamental frequency, operating at an overtone.
Contact us to discuss your requirements of tcxo tc. Our experienced sales team can help you identify the options that best suit your needs.
A badly designed oscillator circuit may suddenly begin oscillating on an overtone. In , a train in Fremont, California crashed due to a faulty oscillator. An inappropriate value of the tank capacitor caused the crystal in a control board to be overdriven, jumping to an overtone, and causing the train to speed up instead of slowing down.[42]
Temperature
[
edit
]
Temperature influences the operating frequency; various forms of compensation are used, from analog compensation (TCXO) and microcontroller compensation (MCXO) to stabilization of the temperature with a crystal oven (OCXO). The crystals possess temperature hysteresis; the frequency at a given temperature achieved by increasing the temperature is not equal to the frequency on the same temperature achieved by decreasing the temperature. The temperature sensitivity depends primarily on the cut; the temperature compensated cuts are chosen as to minimize frequency/temperature dependence. Special cuts can be made with linear temperature characteristics; the LC cut is used in quartz thermometers. Other influencing factors are the overtone used, the mounting and electrodes, impurities in the crystal, mechanical strain, crystal geometry, rate of temperature change, thermal history (due to hysteresis), ionizing radiation, and drive level.
Crystals tend to suffer anomalies in their frequency/temperature and resistance/temperature characteristics, known as activity dips. These are small downward frequency or upward resistance excursions localized at certain temperatures, with their temperature position dependent on the value of the load capacitors.
Mechanical stress
[
edit
]
Mechanical stresses also influence the frequency. The stresses can be induced by mounting, bonding, and application of the electrodes, by differential thermal expansion of the mounting, electrodes, and the crystal itself, by differential thermal stresses when there is a temperature gradient present, by expansion or shrinkage of the bonding materials during curing, by the air pressure that is transferred to the ambient pressure within the crystal enclosure, by the stresses of the crystal lattice itself (nonuniform growth, impurities, dislocations), by the surface imperfections and damage caused during manufacture, and by the action of gravity on the mass of the crystal; the frequency can therefore be influenced by position of the crystal. Other dynamic stress inducing factors are shocks, vibrations, and acoustic noise. Some cuts are less sensitive to stresses; the SC (stress-compensated) cut is an example. Atmospheric pressure changes can also introduce deformations to the housing, influencing the frequency by changing stray capacitances.
Atmospheric humidity influences the thermal transfer properties of air, and can change electrical properties of plastics by diffusion of water molecules into their structure, altering the dielectric constants and electrical conductivity.[43]
Other factors influencing the frequency are the power supply voltage, load impedance, magnetic fields, electric fields (in case of cuts that are sensitive to them, e.g., SC cuts), the presence and absorbed dose of γ-particles and ionizing radiation, and the age of the crystal.
Aging
[
edit
]
Crystals undergo slow gradual change of frequency with time, known as aging. There are many mechanisms involved. The mounting and contacts may undergo relief of the built-in stresses. Molecules of contamination either from the residual atmosphere, outgassed from the crystal, electrodes or packaging materials, or introduced during sealing the housing can be adsorbed on the crystal surface, changing its mass; this effect is exploited in quartz crystal microbalances. The composition of the crystal can be gradually altered by outgassing, diffusion of atoms of impurities or migrating from the electrodes, or the lattice can be damaged by radiation. Slow chemical reactions may occur on or in the crystal, or on the inner surfaces of the enclosure. Electrode material, e.g. chromium or aluminium, can react with the crystal, creating layers of metal oxide and silicon; these interface layers can undergo changes in time. The pressure in the enclosure can change due to varying atmospheric pressure, temperature, leaks, or outgassing of the materials inside. Factors outside of the crystal itself are e.g. aging of the oscillator circuitry (and e.g. change of capacitances), and drift of parameters of the crystal oven. External atmosphere composition can also influence the aging; hydrogen can diffuse through nickel housing. Helium can cause similar issues when it diffuses through glass enclosures of rubidium standards.[44]
Gold is a favored electrode material for low-aging resonators; its adhesion to quartz is strong enough to maintain contact even at strong mechanical shocks, but weak enough to not support significant strain gradients (unlike chromium, aluminium, and nickel). Gold also does not form oxides; it adsorbs organic contaminants from the air, but these are easy to remove. However, gold alone can undergo delamination; a layer of chromium is therefore sometimes used for improved binding strength. Silver and aluminium are often used as electrodes; however both form oxide layers with time that increases the crystal mass and lowers frequency. Silver can be passivated by exposition to iodine vapors, forming a layer of silver iodide. Aluminium oxidizes readily but slowly, until about 5 nm thickness is reached; increased temperature during artificial aging does not significantly increase the oxide forming speed; a thick oxide layer can be formed during manufacture by anodizing.[45] Exposition of silver-plated crystal to iodine vapors can also be used in amateur conditions for lowering the crystal frequency slightly; the frequency can also be increased by scratching off parts of the electrodes, but that carries risk of damage to the crystal and loss of Q.
A DC voltage bias between the electrodes can accelerate the initial aging, probably by induced diffusion of impurities through the crystal. Placing a capacitor in series with the crystal and a several-megaohm resistor in parallel can minimize such voltages.
Aging decreases logarithmically with time, the largest changes occurring shortly after manufacture. Artificially aging a crystal by prolonged storage at 85 to 125 °C can increase its long-term stability.
Mechanical damage
[
edit
]
Crystals are sensitive to shock. The mechanical stress causes a short-term change in the oscillator frequency due to the stress-sensitivity of the crystal, and can introduce a permanent change of frequency due to shock-induced changes of mounting and internal stresses (if the elastic limits of the mechanical parts are exceeded), desorption of contamination from the crystal surfaces, or change in parameters of the oscillator circuit. High magnitudes of shocks may tear the crystals off their mountings (especially in the case of large low-frequency crystals suspended on thin wires), or cause cracking of the crystal. Crystals free of surface imperfections are highly shock-resistant; chemical polishing can produce crystals able to survive tens of thousands of g.[46]
Crystals have no inherent failure mechanisms; some have operated in devices for decades. Failures may be, however, introduced by faults in bonding, leaky enclosures, corrosion, frequency shift by aging, breaking the crystal by too high mechanical shock, or radiation-induced damage when non-swept quartz is used.[47] Crystals can be also damaged by overdriving.
Frequency fluctuations
[
edit
]
Crystals suffer from minor short-term frequency fluctuations as well. The main causes of such noise are e.g. thermal noise (which limits the noise floor), phonon scattering (influenced by lattice defects), adsorption/desorption of molecules on the surface of the crystal, noise of the oscillator circuits, mechanical shocks and vibrations, acceleration and orientation changes, temperature fluctuations, and relief of mechanical stresses. The short-term stability is measured by four main parameters: Allan variance (the most common one specified in oscillator data sheets), phase noise, spectral density of phase deviations, and spectral density of fractional frequency deviations. The effects of acceleration and vibration tend to dominate the other noise sources; surface acoustic wave devices tend to be more sensitive than bulk acoustic wave (BAW) ones, and the stress-compensated cuts are even less sensitive. The relative orientation of the acceleration vector to the crystal dramatically influences the crystal's vibration sensitivity. Mechanical vibration isolation mountings can be used for high-stability crystals.
Phase noise plays a significant role in frequency synthesis systems using frequency multiplication; a multiplication of a frequency by N increases the phase noise power by N2. A frequency multiplication by 10 times multiplies the magnitude of the phase error by 10 times. This can be disastrous for systems employing PLL or FSK technologies.
Magnetic fields have little effect on the crystal itself, as quartz is diamagnetic; eddy currents or AC voltages can however be induced into the circuits, and magnetic parts of the mounting and housing may be influenced.
After the power-up, the crystals take several seconds to minutes to "warm up" and stabilize their frequency. The oven-controlled OCXOs require usually 310 minutes for heating up to reach thermal equilibrium; the oven-less oscillators stabilize in several seconds as the few milliwatts dissipated in the crystal cause a small but noticeable level of internal heating.[48]
Drive level
[
edit
]
The crystals have to be driven at the appropriate drive level. Low-frequency crystals, especially flexural-mode ones, may fracture at too high drive levels. The drive level is specified as the amount of power dissipated in the crystal. The appropriate drive levels are about 5 μW for flexural modes up to 100 kHz, 1 μW for fundamental modes at 14 MHz, 0.5 μW for fundamental modes 420 MHz and 0.5 μW for overtone modes at 20200 MHz.[49] Too low drive level may cause problems with starting the oscillator. Low drive levels are better for higher stability and lower power consumption of the oscillator. Higher drive levels, in turn, reduce the impact of noise by increasing the signal-to-noise ratio.[50]
Crystal cuts
[
edit
]
The resonator plate can be cut from the source crystal in many different ways. The orientation of the cut influences the crystal's aging characteristics, frequency stability, thermal characteristics, and other parameters. These cuts operate at bulk acoustic wave (BAW); for higher frequencies, surface acoustic wave (SAW) devices are employed.
Image of several crystal cuts[51]
The letter T in the cut name marks a temperature-compensated cut a cut oriented in a way that the temperature coefficients of the lattice are minimal; the FC and SC cuts are also temperature-compensated.
The high frequency cuts are mounted by their edges, usually on springs; the stiffness of the spring has to be optimal, as if it is too stiff, mechanical shocks could be transferred to the crystal and cause it to break, and too little stiffness may allow the crystal to collide with the inside of the package when subjected to a mechanical shock, and break. Strip resonators, usually AT cuts, are smaller and therefore less sensitive to mechanical shocks. At the same frequency and overtone, the strip has less pullability, higher resistance, and higher temperature coefficient.[69]
The low frequency cuts are mounted at the nodes where they are virtually motionless; thin wires are attached at such points on each side between the crystal and the leads. The large mass of the crystal suspended on the thin wires makes the assembly sensitive to mechanical shocks and vibrations.[52]
The crystals are usually mounted in hermetically sealed glass or metal cases, filled with a dry and inert atmosphere, usually vacuum, nitrogen, or helium. Plastic housings can be used as well, but those are not hermetic and another secondary sealing has to be built around the crystal.
Several resonator configurations are possible, in addition to the classical way of directly attaching leads to the crystal. E.g. the BVA resonator (Boîtier à Vieillissement Amélioré, Enclosure with Improved Aging),[70][unreliable source?] developed in ; the parts that influence the vibrations are machined from a single crystal (which reduces the mounting stress), and the electrodes are deposited not on the resonator itself but on the inner sides of two condenser discs made of adjacent slices of the quartz from the same bar, forming a three-layer sandwich with no stress between the electrodes and the vibrating element. The gap between the electrodes and the resonator act as two small series capacitors, making the crystal less sensitive to circuit influences.[71][unreliable source?] The architecture eliminates the effects of the surface contacts between the electrodes, the constraints in the mounting connections, and the issues related to ion migration from the electrodes into the lattice of the vibrating element.[72] The resulting configuration is rugged, resistant to shock and vibration, resistant to acceleration and ionizing radiation, and has improved aging characteristics. AT cut is usually used, though SC cut variants exist as well. BVA resonators are often used in spacecraft applications.[73]
In the s to s, it was fairly common for people to adjust the frequency of the crystals by manual grinding. The crystals were ground using a fine abrasive slurry, or even a toothpaste, to increase their frequency. A slight decrease by 12 kHz when the crystal was overground was possible by marking the crystal face with a pencil lead, at the cost of a lowered Q.[74]
The frequency of the crystal is slightly adjustable ("pullable") by modifying the attached capacitances. A varactor, a diode with capacitance depending on applied voltage, is often used in voltage-controlled crystal oscillators, VCXO. The crystal cuts are usually AT or rarely SC, and operate in fundamental mode; the amount of available frequency deviation is inversely proportional to the square of the overtone number, so a third overtone has only one-ninth of the pullability of the fundamental mode. SC cuts, while more stable, are significantly less pullable.[75]
Circuit notations and abbreviations
[
edit
]
On electrical schematic diagrams, crystals are designated with the class letter Y (Y1, Y2, etc.). Oscillators, whether they are crystal oscillators or others, are designated with the class letter G (G1, G2, etc.).[76][77] Crystals may also be designated on a schematic with X or XTAL (a phonetic abbreviation, comparable to using Xmas for Christmas), or a crystal oscillator with XO.
Crystal oscillator types and their abbreviations:
See also
[
edit
]
References
[
edit
]
Further reading
[
edit
]
Quartz Crystal Resonators
Quartz Crystal Resonator
Quartz crystal resonators are sometimes referred to as xtals and as resonators they provide exceedingly high levels of Q for oscillators & filters and are widely used in many RF circuit design applications.
Home » Electronic components » this page
Quartz Crystals, Xtals Tutorial Includes:
Quartz crystals: xtals
What is quartz
How a crystal works
Crystal overtone operation
Quartz crystal frequency pulling
Quartz crystal cuts
Quartz ageing
Crystal resonator manufacture
How to specify a quartz crystal
VCXO
TCXO
OCXO
Crystal filter
Monolithic crystal filter
Ceramic resonator & filter
Ceramic filter specifications
Quartz crystal resonators are used to provide very high Q resonant elements within many electronic designs and particularly within many RF circuit designs within oscillators and filters.
Often in a circuit design, these electronic components may be referred to as "Xtals" and circuit design references to them may be given as xtal1, etc.
Wire leaded HC49 quartz crystal resonatorQuartz crystals can be cheap to produce even though they offer exceptional performance and can be used for everything from electronic designs for microprocessor clock oscillators to high performance filters, highly stable oven controlled oscillators, temperature compensated crystal oscillators and many more general and RF circuit designs.
As the name implies quartz crystal resonators are made from quartz which is is a naturally occurring form of silicon. However most of the quartz used for the electronics industry is manufactured synthetically.
Quartz crystal resonators are available in many sizes and formats to suit the requirements of most applications. From small surface mount devices right through to larger through hole mounted crystals as well as those for sockets, there are many sizes and formats for these electronic components.
Video: Understanding Quartz Crystal Resonators
Quartz crystal resonator basics
Quartz crystal resonator technology relies on the remarkable properties of quartz for its operation. When placed into an electronic circuit a quartz crystal acts as a tuned circuit. However it has an exceptionally high Q.
Ordinary LC tuned circuits may exhibit values of a few hundred if carefully designed and constructed, but quartz crystals exhibit values of up to 100 000.
Apart from their Q, crystal technology also has a number of other advantages. They are very stable with respect to temperature and time. In fact most crystals will have these figures specified and they might typically be ±5 ppm (parts per million) per year for the ageing and ±30 ppm over a temperature range of 0 to 60 °C.
A crystal of naturally occurring quartzIn operation the quartz crystal uses the piezo electric effect to convert the electrical signals to mechanical vibrations. These cause the crystal to vibrate and the mechanical resonances of the crystal then act on the mechanical vibrations. The piezo-electric effect then links back to the electrical domain and the signals are converted back having been affected by the mechanical resonances.
The overall effect is that the quartz crystal links the very high Q mechanical resonances to the electrical domain, enabling very highly stable and high Q resonances to affect electrical signals.
Read more about . . . . what quartz is.Quartz crystal circuit symbol
The circuit symbol for a quartz crystal resonator used in electronic design schematics is straightforward. The quartz crystal symbol shows the two plates either side of the main quartz element. It has two lines, one top and the other at the bottom with a central rectangle.
In many ways, the circuit symbol is a good representation of the actual crystal itself, especially as early crystal resonators consisted of a quartz slab held between two conducting plated.
Circuit symbol for a quartz crystal resonator, xtalUnlike many other circuit symbols, there are very few variations of the quartz crystal circuit symbol, and accordingly it is widely recognised.
How quartz crystal resonators work
The operation of the quartz crystal is based around the fact that quartz exhibits the piezo-electric effect. This means that when a stress is set up a cross the crystal, an electromotive force or electric potential is seen. The reverse is also true, then when a potential is applied across the crystal, it deflects slightly.
Selection of quartz crystal resonators fro vintage to the latest SMD typesThis means that piezo electric effect enables the mechanical and electrical domains to be linked.
In terms of the operation of the quartz crystal as a high Q resonator, the quartz crystal may have an electrical signal such as a signal in a radio receiver, placed across it. This is converted into a mechanical vibration.
The mechanical properties of the quartz crystal act as a very high Q resonator. The effect of this is then converted back into the electrical domain. The overall result is that it appears to the electrical circuit that a very high Q electrical filter is present.
In any electronic circuit design it is useful to see the equivalent circuit of the crystal so that the electronic design can be completed correctly. The normal equivalent circuit for the quartz crystal resonator is given below.
Quartz crystal resonator equivalent circuitQuartz crystal uses
Quartz crystals are used in two main forms of application: as the resonant element in oscillators, and in filters. In both applications the very high Q of the quartz crystal resonator enables very high performance levels to be achieved, and this is why they are used in many general circuit designs for low cost clocks as well as more demanding RF circuit design applications.
Some of the uses of these electronic components along with their abbreviations are outlined in more detail below:
- Oscillators: The high Q of the quartz crystal means that oscillators using are able to offer very high levels of accuracy and stability. There are several options for the ways in which quartz resonators can be used in an electronic design depending upon the performance requirements and the cost restraints.
- Crystal Oscillator - XO: Quartz resonators can be used very simply within a straightforward oscillator circuit. As basic quartz resonators are relatively inexpensive, they are often be used as the resonator for applications where they are the resonator within a clock oscillator for a microprocessor, for example.
Quartz crystal resonator used on a PC motherbaord
Generally the requirements for accuracy these oscillators are not excessively high and therefore costs can be kept to a minimum by using a quartz crystal. When used in these applications, quartz crystals are cheaper than many other solutions that would not perform as well. Obviously straightforward crystal oscillators are used in many other areas as well.
Voltage Controlled Crystal Oscillator - VCXO: For some applications a small degree of change of the oscillator frequency may be needed. A VCXO or Voltage Controlled Xtal Oscillator is relatively easy to construct.
The circuits are straightforward and generally involve using a variable voltage to drive a varactor diode in the crystal circuit. The change in reactance of the varactor changes the overall resonant frequency of the crystal and its associated circuitry.
However in view of the high Q of the crystal resonator, only relatively small changes in frequency are possible. These circuits can be built, or they are available as commercial modules.
Read more about . . . . VCXOs.
Temperature compensated crystal oscillator - TCXO: One of the main causes of frequency change of a crystal oscillator is temperature change. Where more frequency stability is required than can be supplied by a standard oscillator, then a TCXO, Temperature Compensated Xtal Oscillator is an option. As the name implies, this form of oscillator applies temperature compensation to the oscillator. Although they do not have the same performance as an oven controlled crystal oscillator, they are nevertheless able to provide very high levels of stability and performance for many circuit designs.
Read more about . . . . TCXOs.
- Oven Controlled Crystal Oscillator - OCXO: Where the very highest levels of frequency stability are required, the best option is an oven controlled crystal oscillator. Called an OCXO: Oven Controlled Crystal Oscillator, this form of crystal oscillator keeps the crystal and its associated circuitry in a temperature controlled 'oven'. This runs at a temperature above the ambient and is maintained at a constant temperature while there oscillator is running. In this way any changes resulting from temperatures changes are minimised.
Read more about . . . . OCXOs.
- Crystal Oscillator - XO: Quartz resonators can be used very simply within a straightforward oscillator circuit. As basic quartz resonators are relatively inexpensive, they are often be used as the resonator for applications where they are the resonator within a clock oscillator for a microprocessor, for example.
Quartz crystal resonator used on a PC motherbaord
- Filters: The other main application for quartz crystal resonators is within filters. Here the resonator is used in a circuit which is used to accept wanted signals and reject unwanted ones. The very high Q levels attainable using quartz mean that these filters are very high performance.
The quartz crystal filters may consist of a single crystal, but more sophisticated filters offering a much higher level of performance may be made using six or even eight crystals. In view of the fact that these filters involve experience and advanced RF circuit design, they are often obtained as filter modules, although many are manufactured by the final manufacturers / designers themselves.
Quartz crystal advantages & disadvantages
Quartz crystal technology offers very many advantages, but against this there are also some other points to be placed into the equation when considering their use:
Advantages of quartz crystal resonators:
- Very high Q resonator: The Q of a quartz crystal is very high. This in turn reflects in terms of several advantages:
- Very stable signal when used in an oscillator.
- Low levels of phase noise when used in an oscillator.
- When used in a filter it is possible to achieve very high levels of selectivity. Crystal filters are able to provide excellent performance and provide some of the best options for sharp filters within a variety of applications.
- Low cost: Basic crystals are available at very reasonable costs. Their use can often result in a cheaper clock or other source when used as the resonator. Highly specified quartz crystal resonators obviously cost more.
Disadvantages of quartz crystal resonators:
- Size: A crystal relies on mechanical vibrations for its resonant behaviour. As a result size cannot be reduced easily and they may be large when compared to other SMT components. That said, new surface mount technology crystals are available in very small packages now.
- Soldering: In view of their performance soldering needs to be undertaken with care observing maximum temperatures and soldering times.
- Fixed frequency: Although this can be an advantage as well, a crystal has its own natural resonant frequencies. Once chosen and manufactured these cannot be altered, although it is possible to 'pull' the frequency of an oscillator by a small amount.
As with any technology, these electronic components have the positives and negatives. Understanding these issues and the benefits they bring can enable the best to be made of them in the electronic design stage.
SMD quartz crystal in an HC49 packageQuartz crystal and oscillators time line
Since the first signs of the piezo electric effect and the action of quartz crystals, it has taken many years for their development to be taken to the stage where it is now.
Early investigations demonstrated the effect, and it was some years before radio technology was developed and the action of quartz crystal resonators or xtals could be demonstrated and then refined.
Note on Quartz crystal resonator history & timeline:
Quartz crystals have become an essential part of today's electronics providing a high performance resonator at low cost. These components have developed over many years with many people and organisations being involved in their development.
Read more about Quartz crystal history.
How quartz crystal resonators are made
Quartz crystal resonators are manufactured in vast quantities. The manufacturing process starts with the raw silicon which is converted into synthetic quartz and then the individual quartz crystal resonators are manufactured from there. Once the basic quartz crystals have been manufactured they are trimmed and then encapsulated.
In some areas of the quartz crystal resonator manufacturing process, some elements bear some similarities to that of semiconductor manufacture, although the products being manufactured are very different.
Processes like etching, deposition and the like are all used in the quartz crystal manufacturing process.
Read more about . . . . quartz crystal resonator manufacture.Specifying quartz crystal resonators
When choosing a quartz crystal resonator for a general circuit design or an RF circuit design there are many parameters that need to be selected. Many of these are specific to the crystal operation and are not normally seen with other electronic components.
Typically manufacturers will require a number of parameters, often set out on a specific form before they are able to manufacture and supply the required crystal element.
The decisions about the various parameters to be selected may depend upon other electronic components in the circuit, or the overall electronic design.
Understanding the different parameters to be selected and the way in which they may affect the electronic design and selection of other electronic components ensures that the correct decisions are made.
Read more about . . . . how to specify a quartz crystal resonator.Quartz crystal resonators are widely used within the electronics industry. They can be used in quartz crystal oscillators and crystal filters where they provide exceptionally high levels of performance. In addition to this, low cost elements with lower tolerance specifications are widely used in crystal oscillators for microprocessor board clocks where they are used as cheap resonator elements. Whatever its use a quartz crystal resonator provides an exceptionally high level of performance for the cost of its production.
Written by Ian Poole .
Experienced electronics engineer and author.
More Electronic Components:
Batteries
Capacitors
Connectors
ADC
DAC
Diodes
FET
Inductors
Memory types
Phototransistor
Quartz crystals
Relays
Resistors
RF connectors
Switches
Surface mount technology
Thyristor
Transformers
Transistor
Unijunction
Valves / Tubes
Return to Components menu . . .